PDF nghiên cứu vi cấu trúc và cơ tính của các vật liệu phủ ngoài - luận án tiến sĩ vật lý kỹ thuật

Tin đăng trong 'Tiến sĩ, thạc sĩ' bởi mod_luong, Cập nhật cuối: 03/03/2020.

  1. mod_luong

    mod_luong Moderator Staff Member

    Tham gia :
    09/10/2019
    Bài viết:
    139
    Lượt thích:
    0
    Điểm thành tích:
    1.406
    [​IMG]

    [​IMG]

    [​IMG]

    [​IMG]
    nghiên cứu vi cấu trúc và cơ tính của các vật liệu phủ ngoài - luận án tiến sĩ vật lý kỹ thuật

    TÀI LIEU THAM KHO
    Tiêng Viet
    [1] Nguyen Van Hông (2010) Mô phng ôxit hai nguyên t trng thái vô d
    nh hình và
    lng. Luan án tiên si vat lý, Di hc Bách Khoa Hà Noi.
    [2] Nguyen Viêt Huy (2014) Mô phng phân bô góc, t- phân các dơn v câu trúc và cơ
    tính ca các vat lieu hai nguyên AOx. Luan án tiên si vat lý ky thuat, Di hc Bách
    Khoa Hà Noi.
    [3] Nguyen Thu Nhàn (2011) Mô phng các he ô xít hai nguyên và ba nguyên. Luan án
    tiên si vat lý, Di hc Bách Khoa Hà Noi.
    [4] Lê Thê Vinh (2008) Mô phng vi câu trúc và mot sô tính chât vat lý ca he Al2O3,
    GeO2 , trng thái lng và vô dnh hình. Luan án tiên si vat lý, Di hc Bách Khoa
    Hà Noi.
    Tiêng Anh
    [5] A. Karimi et al. (2002) Fracture mechanisms in nanoscale layered hard thin films.
    Thin Solid Films. Vol. 420-421, pp. 275-280.
    [6] A. Khan, J. Philip, and P. Hess (2004) Young's modulus of silicon nitride used in
    scanning force microscope cantilevers. J. Appl. Phys., Vol. 95, pp. 1667-1672.
    [7] A. Mazel, P. Marti, F. Henry, B. Armas, R. Bonnet, M. Loubradou (1997)
    Nanostructure and local chemical composition of AlN-Si3N4 layers grown by
    LPCVD. Thin Solid Films, Vol. 304, pp. 256-266.
    [8] A. Nakano, R.K. Kalia, P. Vashishta (1995) Dynamics and Morphology of Brittle
    Cracks: A Molecular-Dynamics Study of Silicon Nitride. Phys. Rev. Lett., Vol. 75,
    pp. 3138-3141.
    [9] A. Omeltchenko, A. Nakano, R. K. Kalia and P. Vashishta (1996) Structure,
    mechanical properties, and thermal transport in microporous silicon nitridemolecular-
    dynamics simulations on a parallel machine. Europhys. Lett. Vol. 33, pp.
    667-672.
    [10] A. Pélisson, M. Parlinska-Wojtan, H. J. Hug, J. Patscheider (2007) Microstructure
    and mechanical properties of Al–Si–N transparent hard coatings deposited by
    magnetron sputtering. Surf. Coat. Technol. Vol. 202, pp. 884-889.
    [11] A.A. Voevodin, S.V. Prasad, J.S. Zabinski (1997) Nanocrystalline
    carbide/amorphous carbon composites. J. Appl. Phys. Lett. Vol. 82(2), pp. 855-858.
    [12] Alexander Stukowski (2012) Structure identification methods for atomistic
    simulations of crystalline materials. Modelling and Simulation in Material Science
    and Engineering. Vol. 20 (2012), 045021.
    [13] B. Lawn (1993) Fracture of Brittle Solids, Cambridge Univ. Press, pp. 173
    [14] B. Subramanian, R. Ananthakumar, V. S. Vidhya, M. Jayachandran (2011) Influence
    of substrate temperature on the materials properties of reactive DC magnetron
    sputtered Ti/TiN multilayered thin films. Mater. Sci. Eng. B. Vol. 176, pp. 1-7.
    115
    [15] B. Xu et al.(2011) Equilibrium and metastable phase transitions in silicon nitride at
    high pressure: A first-principles and experimental study. Phys. Rev. B Vol. 84,
    014113 .
    [16] B.F. Coll, R. Fontana, A. Gates, P. Sathrum (1991) (Ti-Al)N advanced films prepared
    by arc process. Mater. Sci. Eng. A. Vol. 140, pp. 816-824.
    [17] B.S. Kim, G. S. Kim, S. Y. Lee, B. Y. Lee (2008) Effects of Al target power on the
    mechanical and oxidation resistance of the CrN/AlN multilayer coatings. Surf. Coat.
    Technol. Vol. 202, pp. 5526-5529.
    [18] C. Gautier, J. Machet (1997) Study of the growth mechanisms of chromium nitride
    films deposited by vacuum ARC evaporation. Thin Solid Films. Vol. 295, pp. 43-52.
    [19] C. J. Fennel, J. D. Gêzlter (2006) Is the Ewald summation still necessary? Pairwise
    alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys.
    Vol. 124, 234104-(1-12) (2006).
    [20] C. L. Chang, C. S. Huang (2011) Effect of bias voltage on microstructure,
    mechanical and wear properties of Al–Si–N coatings deposited by cathodic arc
    evaporation. Thin Solid Films, Vol. 519, pp. 4923-4927.
    [21] C. M. Marian, M. Gastreich and J. D. Gale (2000) Empirical Two-Body Potential for
    Solid Silicon Nitride, Boron Nitride, and Borosilazane Modifications. Phys. Rev. B,
    Vol. 62, pp. 3117-3124.
    [22] C. Tritremmel, R. Daniel, M. Lechthaler, H. Rudigier, P. Polcik, C. Mitterer (2012)
    Microstructure and mechanical properties of nanocrystalline Al–Cr–B–N thin films.
    Surf. Coat. Technol. Vol. 213, pp. 1-7.
    [23] C.-L. Chang, C.-S. Huang, J.-Y. Jao (2011) Microstructural, mechanical and wear
    properties of Cr–Al–B–N coatings deposited by DC reactive magnetron cosputtering.
    Surf. Coat. Technol. Vol. 205, pp. 2730-2737.
    [24] C.-Y. Wang, T. Yu (1994) Atomic-structure and doping response of grain-boundary
    in transition-metal Ni. Science in China A. Vol. 37, pp. 878-890.
    [25] D. McIntyre, J.E. Greene, G. Hakansson, J.-E. Sundgren, W.-D. Munz (1990)
    Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films -kinetics and
    mechanisme. J. Appl. Phys. Vol. 67, pp. 1542-1553.
    [26] D. N. Theodorou and U. W. Suter (1985) Detailed molecular structure of a vinyl
    polymer glass. Macromolecules, Vol. 18, pp. 1467-1478 .
    [27] D. Wolf, J.F. Lutsko (1988) Structurally induced supermodulus effect in
    superlattices. Phys. Rev. Lett., Vol. 60, pp. 1170-1173.
    [28] D.B. Lee, T.D. Nguyen, S.K. Kim (2009) Air-oxidation of nano-multilayered
    CrAlSiN thin films between 800 and 1000 °C. Surf. Coat. Technol., Vol. 203, pp.
    1199-1204.
    [29] E. A. Repnikova, V. A. Gutrov and Z. V. Panova (1990) Short-Range Order In Layer
    Silicon Nitride. Phys. Status Solidi A, Vol. 119, p. 113 .
    [30] E.C. Paloura, A. Mertens, K. Holldack (1996) The effect of ion implantation in the
    microstructure of Si3N4 films: an X-Ray absorption study. Nucl. Instr. and Meth. in
    Phys. Res. B Vol. 113, pp. 231.
    [31] E.O. Hall (1951) The Deformation and Ageing of Mild Steel: III Discussion of
    Results. Proc. Phys. Soc. B Vol. 64, London, pp. 747-753.
    116
    [32] E.S. Pacheco, T. Mura (1969) Interaction between a screw dislocation and a
    bimetallic interfaceJ. Mech. Phys. Solids, Vol. 17, pp. 163-170.
    [33] F. Alvarez and A. A. Valladares (2003) First-principles simulations of atomic
    networks and optical properties of amorphous SiNx alloys. Phys. Rev. B Vol. 68, pp.
    205203.
    [34] F. Alvarez, C. C. Díaz, A. A. Valladares, and R. M. Valladares (2002) Radial
    distribution functions of ab initio generated amorphous covalent networks. Phys.
    Rev. B, Vol. 65, pp. 113108 (1-4).
    [35] F. de Brito Mota, J. F. Justo, and A. Fazzio (1998) Structural properties of
    amorphous silicon nitride. Phys. Rev. B, Vol. 58, pp. 8323.
    [36] F. Vaz, L. Rebouta, M. Andritschky, M.F. Da Silva, J.C. Soares (1998) Oxidation
    resistance of (Ti, Al, Si)N coatings in air. Surf. Coat. Technol. Vol. 98, pp. 912-917.
    [37] G. Abadias, C. Jaouen, F. Martin, J. Pacaud, P. Djemia, F. Ganot (2002)
    Experimental evidence for the role of supersaturated interfacial alloys on the shear
    elastic softening of Ni/Mo superlattices. Phys. Rev. B, Vol. 65, 212105.
    [38] G. Lehmann et al. (2001) Structural and elastic properties of amorphous silicon
    carbon nitride films. Phys. Rev. B, Vol. 64, pp. 165305-165310.
    [39] G. Pacchioni and D. Erbetta (1999) Electronic structure and spectral properties of
    paramagnetic point defects in Si3N4. Phys. Rev. B, Vol. 60, pp. 12617-12625.
    [40] G. Zhang, L. Wang, S.C. Wang, P. Yan, Q. Xue (2009) Structure and mechanical
    properties of reactive sputtering CrSiN films. Appl. Surf. Sci. Vol. 255, pp. 4425-
    4429.
    [41] G. Ziegenhain, A. Hartmaier, H.M. Urbassek (2009) Pair vs many-body potentials:
    Influence on elastic and plastic behavior in nanoindentation of fcc metals. J. Mech.
    Phys. Solids. Vol. 57, pp. 1514-1526.
    [42] G.E. Dieter (1996) Mechanical metallurgy, New York: McGraw-Hill, Inc.
    [43] Guanghua Gao (1998) Large Scale Molecular Simulations with Application to
    Polymers and Nano-scale Materials. Doctoral thesis, California Institute of
    Technology Pasadena, California.
    [44] H. Hasegawa, M. Kawate, T. Suzuki (2005) Effects of Al contents on microstructures
    of Cr1−XAlXN and Zr1−XAlXN films synthesized by cathodic arc method. Surf. Coat.
    Technol., Vol. 200, pp. 2409-2413.
    [45] H. Holleck (1986) Material selection for hard coatings. J. Vac. Sci. Technol. A Vol.
    4, 2661.
    [46] H. Holleck, M. Lahres, P. Woll (1990) Multilayer coatings—influence of fabrication
    parameters on constitution and properties. Surf. Coat. Technol. Vol. 41, pp. 179-
    190.
    [47] H. Ichimura, I. Ando (2001) Mechanical properties of arc-evaporated CrN coatings:
    Part I - nanoindentation hardness and elastic modulus. Surf. Coat. Technol. Vol.
    145, pp. 88-93.
    [48] H. Liu, W. Tang, D. Hui, L. Hei, F. Lu (2009) Characterization of (Al, Si)N films
    deposited by balanced magnetron sputtering. Thin Solid Films, Vol. 517, pp. 5988-
    5993.
    117
    [49] H. Tsuzuki, P. S. Branicio, J. P. Rino (2007) Structural characterization of deformed
    crystals by analysis of common atomic neighborhood. Comput. Phys. Comm. Vol.
    177 (2007) pp. 518-523.
    [50] H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, Wiley, NewYork (1974).
    [51] I. Ohdomari, Y. Yamakoshi, T. Kameyama and H. Akatsu (1987) Structural model of
    amorphous silicon nitride. J. Non-Cryst. Solids, Vol. 89, pp. 303-310.
    [52] I. W. Park et al. (2007) Microstructures, mechanical properties, and tribological
    behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating
    system. Surf. Coat. Technol. Vol. 201, pp. 5223-5227.
    [53] I.A. Krinberg, M.P. Lukovnikova (1996) Application of a vacuum arc model to the
    determination of cathodic microjet parameters. J. Phys. D: Appl. Phys. Vol. 29, pp.
    2901-2906.
    [54] I.G. Brown (1998) Cathodic Arc Deposition of Films. Annu. Rev. Mat. Sci. Vol. 28,
    pp. 243-269.
    [55] I.G. Brown, X. Godechot (1991) Vacuum arc ion charge state distributions. IEEE
    Trans. Plasma Sci. Vol. 19, pp. 713-717.
    [56] J. E. Daalder (1976) Components of cathode erosion in vacuum arcs. J. Phys. D:
    Appl. Phys. Vol. 9, pp. 2379-2395.
    [57] J. F. Justo, F. de Brito Mota, and A. Fazzio (2002) First-principles investigation
    of a−SiNx:H. Phys. Rev. B Vol. 65, pp. 073202:1-073202:4.
    [58] J. K. Park, Y.J. Baik (2005) The crystalline structure, hardness and thermal stability
    of AlN/CrN superlattice coating prepared by D.C. magnetron sputtering. Surf. Coat.
    Technol. Vol. 200, pp. 1519-1523.
    [59] J. Lin, W. D. Sproul, J. J. Moore (2012) Tribological behavior of thick CrN coatings
    deposited by modulated pulsed power magnetron sputtering. Surf. Coat. Technol.
    Vol. 206, pp. 2474-2483.
    [60] J. Musil (2000) Hard and superhard nanocomposite coatings. Surf. Coat. Technol.
    Vol. 125, pp. 322-330.
    [61] J. Musil, M. Jirout (2007) Toughness of hard nanostructured ceramic thin films. Surf.
    Coat. Technol. Vol. 201, pp. 5148-5152.
    [62] J. Musil, M. Šašek, P. Zeman, R. Cerstvý, D. Herman, J.G. Han, V. Šatava (2008)
    Properties of magnetron sputtered Al–Si–N thin films with a low and high Si content,
    Surf. Coat. Technol. Vol. 202, pp. 3485-3493.
    [63] J. Neidhardt, S. Mráz, J.M. Schneider, E. Strub, W. Bohne, B. Liedke, W. Möller, C.
    Mitterer (2008) Experiment and simulation of the compositional evolution of Ti–B
    thin films deposited by sputtering of a compound target. J. App. Phys. Vol. 104, pp.
    063304.
    [64] J. Patscheider (2003) Nanocomposite hard coatings for wear protection MRS Bull.
    28, 180-183.
    [65] J. Schiøtz, T. Vegge, F. D. Di Tolla, and K. W. Jacobsen (1999) Atomic-scale
    simulations of the mechanical deformation of nanocrystalline metal. Physical Review
    B, Vol.60, 11971-11983.
    [66] J. Vetter, R. Knaup, H. Dweletzki, E. Schnider, S. Vogler (1996) Hard coatings for
    118
    lubrication reduction in metal forming. Surf. Coat. Technol. Vol. 86-87, pp.739-747.
    [67] J.E. Krzanowski (1991) The effect of composition profile on the strength of metallic
    multilayer structures. Scripta Metall Mater. Vol. 25, pp. 1465-1470.
    [68] J.-E. Sundgren, J. Birch, G. Hakansson, L. Hultman, U. Helmersson (1990) Growth,
    structural characterization and properties of hard and wear-protective layered
    materials. Thin Solid Films, Vol. 193–194 , pp. 818-831.
    [69] J.G. Sevillano, In: P. Haasen, V. Gerold, G. Kowtorzs, editors. (1980) Strength of
    metals and alloys, Oxford: Pergamon, 819.
    [70] J.S. Koehler (1970) Attempt to Design a Strong Solid. Phys. Rev. B Vol. 2, pp. 547-
    551.
    [71] J.-W. Lee, C.-H. Cheng, H.-W. Chen, L.-W. Ho, J.-G. Duh, Y.-C. Chan (2013) The
    influence of boron contents on the microstructure and mechanical properties of Cr–
    B–N thin films.Vacuum, Vol. 87, pp. 191-194.
    [72] K. Polychronopoulou, M.A. Baker, C. Rebholz, J. Neidhardt, M. OSullivan, A.E.
    Reiter, K. Kanakis, A. Leyland, A. Matthews, C. Mitterer (2009) The nanostructure,
    wear and corrosion performance of arc-evaporated CrBxNy nanocomposite coatings.
    Surf. Coat. Technol. Vol. 204, pp. 246-255.
    [73] L. A. Girifalco and V. G. Weizer (1959) Application of the Morse Potential Function
    to Cubic Metals. Phys. Rev. Vol. 114. p. 687-690.
    [74] L. Giacomazzi and P. Umari (2009) First-principles investigation of electronic,
    structural, and vibrational properties of a-Si3N4. Phys. Rev. B 80, 144201.
    [75] L. Ouyang and W. Y. Ching (1996) Systematic approach to generate near-perfect
    periodic continuous random network models: Application to amorphous Si3N4. Phys.
    Rev. B, Vol. 54, R15594-97.
    [76] L.A. Donahue, J. Cawley, D.B. Lewis, J.S. Brooks, W.D. Munz (1995) Investigation
    of superlattice coatings deposited by a combined steered arc evaporation and
    unbalanced magnetron sputtering technique. Surf. Coat. Technol., Vol. 76, pp. 149-
    158.
    [77] M. Gastreich, J. D. Gale, and C. M. Marian (2003) Charged-particle potential for
    boron nitrides, silicon nitrides, and borosilazane ceramics: Derivation of parameters
    and probing of capabilities. Phys. Rev. B, Vol. 68, 094110:1-094110:17.
    [78] M. Hermann, F. Furtmayr, A. Bergmaier, G. Dollinger, M. Stutzmann, M. Eickhoff
    (2005) Highly Si-doped AlN grown by plasma-assisted molecular-beam epitaxy.
    Appl. Phys. Lett., Vol. 86, 192108.
    [79] M. J. Demkowicz and A. S. Argon (2004) High-Density Liquidlike Component
    Facilitates Plastic Flow in a Model Amorphous Silicon System. Phys. Rev. Lett., Vol.
    93, 025505.
    [80] M. Misawa, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki (1979) Structure
    characterization of CVD amorphous Si3N4 by pulsed neutron total scattering. J.
    Non-Cryst. Solids, Vol. 34, pp. 313-321.
    [81] M. Nordin, M. Larsson, S. Hogmark (1998) Mechanical and tribological properties
    of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on
    cemented carbide. Surf. Coat. Technol., Vol. 106, pp. 234-241.
    119
    [82] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura (1996) Formation
    of cubic-AlN in TiN/AlN superlattice. Surf. Coat. Technol., Vol. 86, pp. 225-230.
    [83] M. Vila, D. Ca´ceres, and C. Prieto (2003) Mechanical properties of sputtered silicon
    nitride thin films. J. Appl. Phys., Vol. 94, pp. 7868-7873.
    [84] M.L. Falk and C.E. Maloney (2010) Simulating the mechanical response of
    amorphous solids using atomistic methods. Eur. Phys. J. B, Vol. 75, pp. 405-413.
    [85] M.P. Allen and D.J. Tildesley (1991), Computer simulation of liquids, Oxford
    University Press, Walton Street, Oxford OX2 6DP.
    [86] N. Fukumoto, H. Ezura, K. Yamamoto, A. Hotta, T. Suzuki (2009) Effects of bilayer
    thickness and post-deposition annealing on the mechanical and structural properties
    of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings. Surf. Coat. Technol. Vol. 203, pp.1343-
    1348.
    [87] N. Umesaki, N. Hirosaki and K. Hirao (1992) Structural characterization of
    amorphous silicon nitride by molecular dynamics simulation. J. Non-Cryst. Solids,
    Vol. 150, pp. 120-125.
    [88] O. Knotek, E. Lugscheider, F. Loffler, B. Bosserhoff, S. Schmitz (1996)
    Superstoichiometric PVD Carbide coatings. Mater. Sci. Eng., Vol. 209, pp. 394-398.
    [89] P. K. Hung, L. T. Vinh, N. V. Huy (2012) The bond angle distribution and local
    coordination for silica glass under densification. Phys. Scr., Vol. 85, 055703.
    [90] P. K. Hung, P. N. Nguyen and D. K. Belashchenko (1998), Computer simulation of
    amorphous alloys Co100-xPx and Co81.5B18.5, Izv. Akad. Nauk. SSSR, Metally, 2, 118-
    121.
    [91] P. Kroll (2001) Structure and reactivity of amorphous silicon nitride investigated
    with density-functional methods. J. Non-Cryst. Solids, Vol. 293-295, pp. 238-243.
    [92] P. Vashishta, R. K. Kalia, A. Nakano, J. P. Rino (2011) Interaction potential for
    aluminum nitride: A molecular dynamics study of mechanical and thermal properties
    of crystalline and amorphous aluminum nitride. J. Appl. Phys., Vol. 109, 033514 (1-
    8).
    [93] P. Vashishta, R. K. Kalia, and I. Ebbsjö (1995) Low-energy floppy modes in hightemperature
    ceramics. Phys. Rev. Lett., Vol. 75, pp. 858-861 .
    [94] P. Walsh el al. (2003) Nanoindentation of silicon nitride: A multimillion-atom
    molecular dynamics study. Appl. Phys. Lett., Vol. 82, pp. 118-120.
    [95] P. Yashar, S.A. Barnett, J. Rechner, W.D. Sproul (1998) Structure and mechanical
    properties of polycrystalline CrN/TiN superlattices. J. Vac. Sci. Technol. A, Vol. 16,
    pp. 2913-2918.
    [96] P.C. Yashar, W.D. Sproul (1999) Nanometer scale multilayered hard coatings.
    Vacuum, Vol. 55, pp.179-190.
    [97] Q.G. Zhou et al.(2003) Corrosion resistance of duplex and gradient CrNx coated
    H13 steel. Appl. Surf. Sci. Vol. 211, pp. 293-299.
    [98] R. Karcher, L. Ley, and R.L. Johnson (1984) Electronic structure of hydrogenated
    and unhydrogenated amorphous SiNx (0x1.6): A photoemission study. Phys. Rev.
    B, Vol. 30, pp. 1896-1910.
    [99] R.A. Jaccodine, W.A. Schlegel (1966) Measurements of strains at Si-SiO2 interface.
    J. Appl. Phys. Vol. 37, pp. 2429-2434.
    120
    [100] R.C. Cammarata (1986) The Supermodulus Effect in Compositionally Modulated
    Thin Films. Scripta Matall, Vol. 20, pp. 479-486.
    [101] R.F. Zhang, S. Veprek (2007) Phase stabilities and spinodal decomposition in the
    Cr1−xAlxN system studied by ab initio LDA and thermodynamic modeling:
    Comparison with the Ti1−xAlxN and TiN/Si3N4 systems. Acta Materialia. Vol. 55, pp.
    4615-4624.
    [102] R.L. Boxman, P.J. Martin, D.M. Sanders (1995) Handbook of Vacuum Arc Science
    and Technology, New York: Noyes Publications.
    [103] R.N. Bernett, C.L. Cleveland, and Uzi Landman (1985) Structure and Dynamics of a
    Metallic Glass: Molecular-Dynamics Simulations. Phys. Rev. Lett., Vol. 55, 2035.
    [104] R.W. Hoffman (1981) Stress distributions and thin film mechanical properties. Surf.
    Interface Anal., Vol. 3, pp. 62-66.
    [105] S. H. Sheng, R. F. Zhang, S. Veprek (2013) Decomposition mechanism of
    Al1−xSixNy solid solution and possible mechanism of the formation of covalent
    nanocrystalline AlN/Si3N4nanocomposites. Acta Mater. Vol. 61, PP. 4226-4236.
    [106] S. Veprek (1999) The search for novel, superhard materials. J. Vac. Sci. Technol. A,
    Vol. 17, pp. 2401-2420.
    [107] S. Veprek, A. Niederhofer, K. Moto, P. Nesladek, H.D. Mannling, T. Bolom (2000)
    Nanocomposites nc-TiN/a-Si3N4/a-and nc-TiSi2 with hardness exceeding 100 GPa
    and high fracture toughness. Mater. Res. Soc. Symp. Proc. 581, pp. 321-326.
    [108] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.D. Mannling, P. Nesladek, G.
    Dollinger, A. Bergmaier (2000) Composition, nanostructure and origin of the
    ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ;105
    GPa. Surf. Coat. Technol., Vol. 133-134, pp. 152-159.
    [109] S. Veprek, Maritza J.G. Veprek-Heijman (2008) Industrial applications of superhard
    nanocomposite coatings. Surf. Coat. Technol. Vol. 202, pp. 5063-5073.
    [110] S. Veprek, Maritza J.G. Veprek-Heijman, K. Pavla, P. Jan (2005) Different
    approaches to superhard coatings and nanocomposites. Thin Solid Films, Vol. 476,
    pp. 1-29.
    [111] S. Veprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, M. Sima (1998) Recent
    progress in the superhard nanocrystalline composites: towards their industrialization
    and understanding of the origin of the superhardness. Surf. Coat. Technol., Vol. 108-
    109, pp.138-147.
    [112] S. Veprek, S. Reiprich, S. Z. Li (1995) Superhard nanocrystalline composite
    materials: The SiN/Si3N4 system. Appl. Phys. Lett., Vol. 66, pp. 2640-2642.
    [113] S. Zhang, N. Chen (2005) Lattice inversion for interatomic potentials in AlN, GaN
    and InN. Chem. Phys. Vol. 309, pp. 309-321.
    [114] S. Zirinsky, E. A. Irene (1978) Selective Studies of Chemical Vapor-Deposited
    Aluminum Nitride-Silicon Nitride Mixture Films. J. Electrochem. Soc., Vol. 125, pp.
    305-314
    [115] S.A. Barnett, A. Madan (1998) Superhard Superlattices. Phys. World, Vol. 11, pp.
    45-48.
    [116] S.K. Kim, P.V. Vinh, J.H. Kim, T. Ngoc (2005) Deposition of superhard TiAlSiN
    thin films by cathodic arc plasma deposition. Surf. Coat. Techol. Vol. 200, pp. 1391-
    121
    1394.
    [117] S.K. Kim, P.V. Vinh, J.W. Lee (2008) Deposition of superhard nanolayered
    TiCrAlSiN thin films by cathodic arc plasma deposition. Surf. Coat. Technol. Vol.
    202, pp. 5395-5399.
    [118] S.K. Kim, V.V. Le (2010) Deposition of nanolayered CrN/AlBN thin films by
    cathodic arc deposition: Influence of cathode arc current and bias voltage on the
    mechanical properties. Surf. Coat. Technol., Vol. 204, pp. 3941-3946.
    [119] S.K. Kim, V.V. Le (2011) Cathodic arc plasma deposition of nano-multilayered
    ZrN/AlSiN thin films. Surf. Coat. Technol., Vol. 206, pp. 1507-1510.
    [120] S.K. Kim, V.V. Le, P.V. Vinh, J.W. Lee (2008) Effect of cathode arc current and
    bias voltage on the mechanical properties of CrAlSiN thin films. Surf. Coat.
    Technol., Vol. 202, pp. 5400-5404.
    [121] S.P. Wen, R.L. Zong, F.Zeng, Y. Gao, F. Pan (2007) Evaluating modulus and
    hardness enhancement in evaporated Cu/W multilayers. Acta Mater., Vol. 55, pp.
    345-351.
    [122] S. Li, Y. Shi, H. Peng (1992) Ti-Si-N films prepared by plasma-enhanced chemical
    vapor deposition. Plasma Chem. Plasma Process. Vol. 12, pp. 287-297.
    [123] Sidney Yip et al (2002), Introduction to Modeling and Simulation, MIT OCW, USA.
    [124] T. Aiyama, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki (1979) An X-ray
    diffraction study of the amorphous structure of chemically vapor-deposited silicon
    nitride. J. Non-Cryst. Solids, Vol. 33, pp. 131-139.
    [125] T. Sato, T. Yamamoto, H. Hasegawa, T. Suzuki (2006) Effects of boron contents on
    microstructures and microhardness in CrxAlyN films synthesized by cathodic arc
    method. Surf. Coat. Technol. Vol. 201, pp. 1348-1351.
    [126] T. Schulke, P. Siemroth (1996) Vacuum arc cathode spots as a self-similarity
    phenomenon. IEEE Trans. Plasma Sci., Vol. 24, pp. 63-64.
    [127] T.D. Nguyen, S. K. Kim, D. B. Lee (2010) Oxidation of nano-multilayered CrAlBN
    thin films between 600 and 1000 °C in air. Surf. Coat. Technol., Vol. 205, pp. S373-
    S378.
    [128] T.H. Courtney (1990) Mechanical behavior of materials, New York: McGraw-Hill,
    Inc.
    [129] U. Bardi et al.(2005) High-temperature oxidation of CrN/AlN multilayer coatings.
    Appl. Surf. Sci., Vol. 252, pp. 1339-1349.
    [130] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert and J.E.
    Greene (1987) Growth of single-crystal TiN/VN strained-layer superlattices with
    extremely high mechanical hardness. J. Appl. Phys., Vol. 62 (2), pp. 481-484.
    [131] V. I. Ivashchenko, P. E. A. Turchi and V. I. Shevchenko (2007) Simulations of the
    mechanical properties of crystalline, nanocrystalline, and amorphous SiC and Si.
    Phys. Rev. B, Vol. 75, 085209.
    [132] V.I. Ivashchenko, S. Veprek (2013) First-principles molecular dynamics study of the
    thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based
    heterostructures: Comparison with experiments. Thin Solid Films, Vol. 545, pp. 391-
    400.
    122
    [133] Vo Van Hoang (2004), Molecular dynamics study on structure and properties of
    liquid and amorphous Al2O3, Phys. Rev. B, Vol. 70, pp. 134204-134210.
    [134] W. Schintlmeister, O. Pacher (1975) Preparation and properties of hard‐material
    layers for metal machining and jewelry. J. Vac. Sci. Technol., Vol. 12, pp. 743-748.
    [135] W.C. Oliver and G.M. Pharr (1992) An improved technique for determining hardness
    and elastic modulus using load and displascement sensing indentation experiments.
    J. Mater. Res. Vol. 7, pp. 1564-1583.
    [136] W.-D. Munz (1986) Titanium aluminum nitride films: A new alternative to TiN
    coatings. J. Vac. Sci. Technol. A, Vol. 4, pp. 2717-2725.
    [137] W.D. Sproul (1996) New routes in the preparation of mechanically hard films.
    Science. Vol. 273, pp. 889-892.
    [138] W.M.C. Yang, T. Tsakalakos, J.E. Hilliard (1977) Enhanced elastic modulus in
    composition‐modulated gold‐nickel and copper‐palladium foils. J. Appl. Phys. Vol.
    48, pp. 876-879.
    [139] X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, S.A. Barnett (1992) Deposition and
    properties of polycrystalline TiN/NbN superlattice coatings. J. Vac. Sci. Technol. A
    10, pp. 1604-1609.
    [140] X. Chu, S.A. Barnett (1995) Model of superlattice yield stress and hardness
    enhancements. J. Appl. Phys. Vol. 77, pp. 4403-4411.
    [141] X. Hou, K. -C. Chou (2009) Investigation of isothermal oxidation of AlN ceramics using
    different kinetic model. Corr. Sci. Vol. 51, pp. 556-561.
    [142] Y. Liu, Y. Kang, N. Chen (2003) Ab initio interatomic potentials of cubic boron
    nitride. J. Alloys Comp. Vol. 349, pp. 17-22.
    [143] Y. Tanaka, N. Ichimiya, Y. Onishi, Y. Yamada (2001) Structure and properties of
    Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed
    cutting applications. Surf. Coat. Technol. Vol. 146-147, pp. 215-221.
    [144] Y.Y. Yang, M.S. Wong, W.J. Chia, J. Rechner, W.D. Sproul (1998) Synthesis and
    characterization of highly textured polycrystalline AlN/TiN superlattice coatings. J.
    Vac. Sci. Technol. A, 16, pp. 3341-3347.
     
    pdf : Bạn cần để tải tài liệu
    Đang tải...

Chia sẻ trang này